Real-time power distribution for energy conservation on an electric vehicle driven by multiple traction motors

Introduction

A pure EV driven by a powertrain of three DYC and SRC angle.

System - A pure EV driven by a powertrain of three traction motors: an indirectly-driven traction motor for front wheels and two in-wheel motors inside both rear wheels.

Energy Saving – Real-time determination of the torque distribution of 3 motors for minimizing energy consumption.

Safety – Vehicle stability control with electric propulsion failure detection and tolerance control.

Methods –

Real-time particle swarm optimization (R-PSO) according to the torque-speed-efficiency maps of the three traction motors.

Vehicle stability control system

slip ratio control, direct yaw-moment control based on sliding mode control.

Experiments – (Hardware-in-the-loop, HIL)

Results –

Parameter Identification process

<table>
<thead>
<tr>
<th>battery model</th>
<th>max voltage error (V)</th>
<th>mean voltage error (V)</th>
<th>max voltage error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRmodel</td>
<td>10.914</td>
<td>3.888</td>
<td>7.77</td>
</tr>
<tr>
<td>Emmodel</td>
<td>5.7514</td>
<td>1.491</td>
<td>4</td>
</tr>
<tr>
<td>IDmodel</td>
<td>4.2640</td>
<td>0.753</td>
<td>3.06</td>
</tr>
</tbody>
</table>

Conclusions –

1. Energy-saving strategy - the PSO algorithm provides a sub-optimal, but real-time and applicable, energy-economy driving for EVs.
2. Safety - DYC and SRC guarantee the vehicle stability and handling.