Positive systems analysis

- Quadratic forms are widely used for system analysis. Lyapunov inequality, Kalman-Yakubovich-Popov Lemma, integral quadratic constraints, etc.
- Analysis can be simplified if systems are known to be positive
- Lyapunov inequality:
 - \[AP + PA + Q > 0 \]
 - \(A \in \mathbb{R}^{n \times n}, \) \(P \in \mathbb{R}^{n \times n} \) are symmetric matrices, \(Q \in \mathbb{R}^{n \times n} \)
 - \(A \) is a stable matrix if \(A^T P + P A + Q > 0 \)
- Kalman-Yakubovich-Popov Lemma:
 - \[\left| \frac{(A - D)^+ B C}{A^T} \right|^2 > 0 \quad \forall \omega \in \mathbb{R} \]
- \(A \) is a stable matrix if \(A^T (A - D)^+ B C > 0 \)
- The theory of integral linear constraints (ILC)

Positive systems

A system \(G \) is said to be positive if

\[(u(t), y(t)) \geq 0 \quad \forall t \geq 0 \]

Given a positive feedback interconnection of two positive systems \(G_1 \) and \(G_2 \), the closed-loop map \((d_1, d_2) \mapsto (u_1, y_2, y_2) \) is always positive?

Feedback interconnections

- Suppose (nonlinear) \(G_i \) are causal and positive, define instantaneous gain of \(G_i \)

\[a(G_i) = \sup_{x \in X} \frac{\max_{y \in Y} y}{\max_{z \in Z} z} \]

Positivity of closed-loop map: If \(a(G_i) < 1 \), then \((d_1, d_2) \mapsto (u_1, y_2, y_2) \) is positive

Robust stability of positive feedback systems

Integral quadratic constraints (IQCs) [Megretski & Rantzer 97]

Given bounded, causal, linear \(G_1 : L_{2}^0 \to L_{2}^0 \) and \(G_2 : L_{2}^0 \to L_{2}^0 \), suppose there exists a linear (time-varying) \(Z \) such that

\[\begin{align*}
(1) & : G_1(z(t)) G_2(z(t)) \\
(2) & : G_1(y(t)) G_2(y(t)) \\
(3) & : G_1(u(t)) G_2(u(t)) \\
(4) & : G_1(w(t)) G_2(w(t))
\end{align*} \]

then \((G_1, G_2) \) is stable

Geometric interpretation of integral linear constraints

Integral linear constraints

Given bounded, causal linear \(G_1 : L_{2}^0 \to L_{2}^0 \) and \(G_2 : L_{2}^0 \to L_{2}^0 \), suppose there exists linear (time-varying) \(Z \) such that

\[\begin{align*}
(1) & : G_1(z(t)) G_2(z(t)) \\
(2) & : G_1(y(t)) G_2(y(t)) \\
(3) & : G_1(u(t)) G_2(u(t)) \\
(4) & : G_1(w(t)) G_2(w(t))
\end{align*} \]

then \((G_1, G_2) \) is stable in \(L_{2}^0 \)

A simple academic example...

- \(a(G_1) \) is a constant feedback delay \((G_1, G_2) \) is stable.
- \(a(G_1) \) is constant feedback delay \((G_1, G_2) \) is stable.

Conclusions

- Extended the recently proposed ILC stability theorem for the positive feedback systems to the setting where component systems could be nonlinear and the multiplier could be time-varying.
- Developed some ILC’s for some uncertainties (more to come...)
- Demonstrated that time-varying ILC’s could be useful when the component systems are not LTI.
- Proposed extensions to “sign preserving” and “cone preserving” feedback systems.